跳转至

扩展欧几里得算法

裴蜀定理

定义

\(a\)\(b\) 是不全为零的整数,则存在整数 \(x\)\(y\),使得 \(ax + by = \gcd(a, b)\)

推广

\(A[1 \sim n]\) 是非零整数序列,则整数序列 \(X[1 \sim n]\) 一定满足:

\[ \sum_{i = 1}^n A_iX_i = k \times \gcd(A_1, A_2, \dots, A_n) \]

,其中 \(k\) 为正整数。

扩展欧几里得算法

扩展欧几里得算法(Extended Euclidean algorithm,EXGCD),常用于求 \(ax + by = \gcd(a, b)\) 的一组可行解。

算法思路

对于 \(ax + by = \gcd(a, b)\),考虑与欧几里得算法相似的思路:

结论:
求一组解 \(x'\)\(y'\),使得 \(bx' + (a \bmod b)y' = \gcd(b, a \bmod b)\)
(欧几里得定理)\(\gcd(a, b) = \gcd(b, a \bmod b)\) \(bx' + (a \bmod b)y' = \gcd(a, b)\)
(模运算的定义)\(a \bmod b = a - \lfloor \dfrac{a}{b} \rfloor \times b\) \(bx' + (a - \lfloor \dfrac{a}{b} \rfloor \times b)y' = \gcd(a, b)\)
整理,得 \(ay' + b(x' - \lfloor \dfrac{a}{b} \rfloor \times y') = \gcd(a, b)\)

我们要求一组解,使得 \(ax + by = \gcd(a, b)\)

因此有一组解为 \(\left\{\begin{array}{l} x = y' \\ y = x' - \lfloor \dfrac{a}{b} \rfloor \times y'\end{array}\right.\).

其边界值为 \(b = 0\),这时有 \(ax = \gcd(a, 0) = a\),既有 \(x = 1\)

为了方便起见,我们取 \(y = 0\)

即:若 \(b = 0\),则取 \(\left\{\begin{array}{l} x = 1 \\ y = 0\end{array}\right.\).

代码

来自 OI-Wiki:

int Exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1;
        y = 0;
        return a;
    }
    int d = Exgcd(b, a % b, x, y);
    int t = x;
    x = y;
    y = t - (a / b) * y;
    return d;
}

简化后可以写作:

int Exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1, y = 0;
        return a;
    }
    int d = Exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

特解到通解

假设我们现在求出了一组特解 \(x_0\)\(y_0\),使得 \(ax_0 + by_0 = \gcd(a, b)\)

接下来:

\[ \begin{array}{rl} ax_0 + by_0 &= \gcd(a, b) \\ (ax_0 + H) + (by_0 - H) &= \gcd(a, b) \\ a(x_0 + H / a) + b(y_0 - H / b) &= \gcd(a, b) \end{array} \]

可以看出 \(H\) 即是 \(a\) 的倍数,又是 \(b\) 的倍数,

所以 \(H = k \times \operatorname{lcm}(a, b)\),其中 \(k\) 可以是任意整数。

即:

\[ \left\{\begin{array}{l} x = x_0 + k \times \dfrac{\operatorname{lcm}(a, b)}{a} \\ y = y_0 + k \times \dfrac{\operatorname{lcm}(a, b)}{b}\end{array}\right. \]

其中 \(k \in \mathbb{Z}\)

Reference

[1] https://oi-wiki.org/math/number-theory/bezouts/

[2] https://oi-wiki.org/math/number-theory/gcd/


Page Top